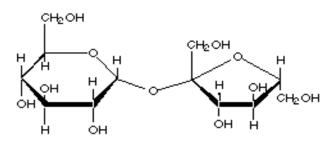
Exercise 1: Reaction of sucrose

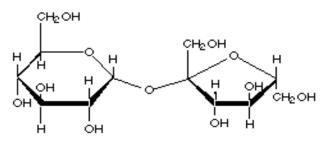


The rate equation for the reaction of sucrose in water is:

rate =
$$-k[C_{12}H_{22}O_{11}].$$

After 2.57 h at 27°C, 5.00 g/L of sucrose has decreased to 4.50 g/L. Find k.

$$C_{12}H_{22}O_{11} + H_2O => 2 C_6H_{12}O_6$$


Sucrose

Exercise 1: Solution

leret Aeppli

 $\ln 4.50 \text{ g/L} / 5.00 \text{ g/L} = - \text{ k1 (2.57 h)}$ $k = 0.0410 \text{ h}^{-1}$

Sucrose

Exercise 2: Ammonium cyanate

Ammonium cyanate, NH₄NCO, rearranges in water to give urea, (NH₂)₂CO. If the original concentration of NH₄NCO is 0.458 mol/L and k = 0.0113 M⁻¹ min⁻¹, how much time elapses before the concentration is reduced to 0.300 mol/L?

 $NH_4NCO \rightarrow (NH_2)_2CO_{(aq)}$ rate = -k[NH₄NCO]²

Exercise 2: Solution

Initial concentration of NH₄NCO: [A]₀ = 0.458 mol/L

 $k = 0.0113 \text{ M}^{-1} \text{ min}^{-1}$

Final concentration of NH₄NCO: [A] = 0.300 mol/L

t = ?

Integrated rate law for second order kinetics: $\frac{1}{|A|} = \frac{1}{|A|} + kt$

Solve for t: $\frac{1}{k} \left(\frac{1}{[A]} - \frac{1}{[A]_0} \right) = t = \frac{1}{0.0113} \left(\frac{1}{0.300} - \frac{1}{0.458} \right) = \frac{102 \text{ min}}{0.458}$

Exercise 3: Reaction order

deret Aeppl

What is the reaction order in A and the overall reaction order of the following equations?

- 1. -d[A]/dt = k[B]
- 2. $-d[A]/dt = k[A]^2$
- 3. $-d[A]/dt = k[A]^{1.5}[B]$

Exercise 3: Solution

r of the

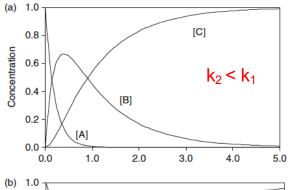
What is the reaction order in A and the overall reaction order of the following equations?

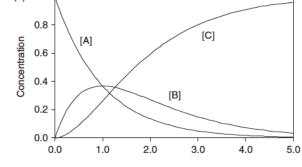
- 1. -d[A]/dt = k[B]: zero order in A, first order overall
- 2. $-d[A]/dt = k[A]^2$: second order in A, second order overall
- 3. $-d[A]/dt = k[A]^{1.5}[B]$: 1.5 order in A, 2.5 order overall

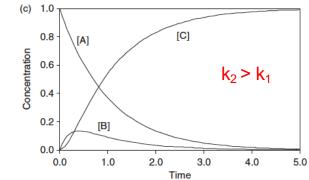
Exercise 4: Half-life of SO₂Cl₂

The decomposition of SO₂Cl₂ is first order in SO₂Cl₂ and has a half-life of 4.1 hr. If you begin with 1.6 x 10⁻³ mol of SO₂Cl₂ in a flask, how many hours elapse before the quantity of SO₂Cl₂ has decreased to 2.00 x 10⁻⁴ mol?

 $SO_2Cl_{2(g)} \rightleftharpoons SO_{2(g)} + Cl_{2(g)}$


Exercise 4: Solution




How many half lives does the decline correspond to?

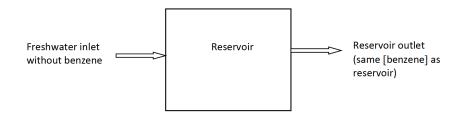
Answer: 3

3*4.1h = 12.3h

Environmental engineering challenge

Benzene

An unknown quantity of benzene has entered a well-mixed reservoir that is used as a drinking storage. As an environmental engineer, you are asked to evaluate the water quality, and decide if the water is still ok for human consumption. It takes you 5 days until you can take the first water sample from the reservoir, and you measure a benzene concentration of 50 µM. Five days later, the concentration is 23.6 µM. Assume that the only transformation mechanism is biodegradation and that it follows first-order kinetics.



Meret Aeppli

Environmental engineering challenge

- a) What was the initial concentration of benzene in the reservoir?
- b) What is the biodegradation rate after 5 days?
- c) How long will it take until the water is potable again (benzene concentration $< 0.1 \mu M$)?
- d) Based on exercise c), you decide that the time for the reservoir to reach drinking water quality is too long. Therefore, you suggest that the reservoir is flushed (i.e., a continuous input of fresh water and a continuous outlet of mixed pond water are installed, see picture), to dilute the benzene concentration in addition to biodegradation. The flushing can be considered a first-order reaction with a reaction rate constant of 0.2 day⁻¹. How long will it take now until the water is potable?

Environmental engineering challenge

a) First determine the rate constant k. You know the following:

At $t_0 = 0$ days, [benzene]₀ is unknown.

At t_1 = 5 days, [benzene]₁ = 50 μ M

At $t_2 = 10$ days, [benzene]₂ = 23.6 µM

Use the first-order rate law to determine k (note that you can pick [benzene]₁ as your initial concentration, [benzene]₂ as your final concentration, and t_2 - t_1 as the time of reaction).

 $\ln \frac{[benzene]_2}{[benzene]_1} = -k(t_2-t_1) \text{ therefore } k = 0.15 \text{ d}^{-1}$

To determine [benzene]₀, use

 $[benzene]_1 = [benzene]_0e^{-kt_1}$ to get $[benzene]_0 = \underline{106 \ \mu M}$

b) The rate (d[benzene]/dt = -k[benzene]) is dependent on the concentration of benzene at the time at which the rate is calculated. Use k from above, and [benzene]₁ to find the rate after 5 days.

rate after 5 days = $-k*50 \mu M = -7.5 \mu M d^{-1}$

EPFL

Environmental engineering challenge

Solve the following equation using [benzene] = 0.1 μ M and [benzene]₀ calculated in a).

$$\ln \frac{[benzene]}{[benzene]_0} = -kt$$
Thus, $t = -\ln \frac{[benzene]}{[benzene]_0} \frac{1}{k}$
Solve for t to find $t > 46.4$ d.

d) By the time you have made all the previous calculations, you are already on day 10 (not 0!), and at a benzene concentration of 23.6 μ M. So the flushing will start on day 10 (not 0). This means that after day 10, the rate constant becomes

$$k_{total} = k_{biodgradation} + k_{flushing} = -0.15 - 0.2 = -0.35 d^{-1}$$

You have to calculate how long it takes to get from 23.6 to < 0.1 μ M, with a k_{total} of -0.35 d⁻¹. You can use the same equations as above, but this time the "initial" benzene concentration is 23.6 μ M.

$$\ln \frac{[benzene]}{[benzene]_0} = -kt$$
 and thus, $t = -\ln \frac{0.1}{23.6} \frac{1}{-0.35} = \underline{15.6} \text{ d}.$